112 research outputs found

    Scandium: A key element for understanding Am stars

    Full text link
    {\rm Context.} Atomic diffusion is believed to cause the abundance anomalies observed in AmFm stars. However, the detailed process has still not been well-established. For instance, two possible scenarios for the diffusion theory are presently envisaged. They differ mainly by the depth from which the abundance anomalies emanate. The first scenario predicts that the abundances are modified in the superficial regions of the star, just below the hydrogen convection zone. The second scenario predicts that a much deeper extension of the mixing zone exists due to the convection caused by Fe accumulation in regions below the hydrogen convection zone. {\rm Aims.} We calculate much more accurate radiative accelerations of Sc than previously, to better understand the observed abundance anomalies of this element. We believe that it is a key element to use as a diagnostic tool for understanding AmFm stars. {\rmMethods.} The method employed to obtain these radiative accelerations is based on an interpolation from the parameters of the so-called SVP parametric method. {\rm Results.} The radiative accelerations, shown here in a typical Am stellar model, are discussed in light of the observed anomalies of Ca and Sc. Our results suggest that the deeper mixing scenario is not entirely satisfactory: the mixing zone should be deeper than what is predicted by recent models to account for observed Sc underabundances. Our results seem more compatible with the scenario where the abundances anomalies are created in the superficial regions. However, only detailed evolutionary modelling with mass loss and diffusion of all important species, including Ca and Sc, with accurate radiative accelerations, will be able to give more insight into where the source of these anomalies occur in AmFm stars.Comment: 6 pages, 3 figures, accepted for publication in A&

    Modelling of the scandium abundance evolution in AmFm stars

    Full text link
    Scandium is a key element of the Am star phenomenon since its surface under-abundance is one of the criteria that characterise such stars. Thanks to the availability of a sufficiently complete set of theoretical atomic data for this element, reliable radiative accelerations for Sc can now be computed, which allows its behaviour under the action of atomic diffusion to be modelled. We explore the required conditions, in terms of mixing processes or mass loss, for our models to reproduce the observed surface abundances of Sc in Am stars. The models are computed with the Toulouse-Geneva evolution code, which uses the parametric single-valued parameter method for the calculation of radiative accelerations. Fingering mixing is included, using a prescription that comes from 3D hydrodynamical simulations. Other parameter-dependent turbulent mixing processes are also considered. A global mass loss is also implemented. When no mass loss is considered, the observed abundances of Sc are rather in favour of the models whose superficial layers are fully mixed down to the iron accumulation zone, although other mixing prescriptions are also able to reproduce the observations for the most massive model presented here (2.0M2.0 M_\odot). The models including mass loss with rates in the range of [1013;1014]M[10^{-13};10^{-14}] M_\odot/yr are compatible with some of the observations, while other observations suggest that the mass-loss rate could be lower. The constraints brought by the modelling of Sc are consistent with those derived using other chemical elements.Comment: 9 pages, 7 figure

    Modelling element distributions in the atmospheres of magnetic Ap stars

    Full text link
    In recent papers convincing evidence has been presented for chemical stratification in Ap star atmospheres, and surface abundance maps have been shown to correlate with the magnetic field direction. Radiatively driven diffusion in magnetic fields is among the processes responsible for these inhomogeneities. Here we explore the hypothesis that equilibrium stratifications can, in a number of cases, explain the observed abundance maps and vertical distributions of the various elements. The investigation of equilibrium stratifications in stellar atmospheres with temperatures from 8500K to 12000K and fields up to 10 kG reveals considerable variations in the vertical distribution of the 5 elements studied (Mg, Si, Ca, Ti, Fe), often with zones of large over- or under-abundances and with indications of other competing processes (such as mass loss). Horizontal magnetic fields can be very efficient in helping the accumulation of elements in higher layers. A comparison between our calculations and the vertical abundance profiles and surface maps derived by magnetic Doppler imaging reveals that equilibrium stratifications are in a number of cases consistent with the main trends inferred from observed spectra. However, it is not clear whether such equilibrium solutions will ever be reached during the evolution of an Ap star.Comment: 7 pages, 6 figures, the paper will be published in Astronomy & Astrophysics, on November 200

    Dynamics of Electron Transport in Cytochrome P450 Systems Studied at Sub-Zero Temperature

    Get PDF
    Experimentation in fluid mixed solvents (1 : 1 v/v phosphate buffer ethylene glycol) at sub-zero temperatures has permitted us to record the two univalent reductions of the bacterial cytochrome P450 by the natural electron donor putidaredoxin, without recycling or alternative pathway reactions. Dynamic evidence shows the formation of putidaredoxincytochrome complexes prior to electron transfer. The complex formation is rate limiting in the first reduction and in our experimental conditions. The kinetics of binding between the two oxidized proteins has also been recorded in the same medium under various conditions of concentration, temperature and ionic strength. At very low ionic strength, the rate is limited by electrostatic repulsion between the two negatively charge proteins; above I = 0.03 this effect appears negligible and the affinity seems to be governed by hydrophobic interaction free energy

    Dynamics of Electron Transport in Cytochrome P450 Systems Studied at Sub-Zero Temperature

    Get PDF
    Experimentation in fluid mixed solvents (1 : 1 v/v phosphate buffer ethylene glycol) at sub-zero temperatures has permitted us to record the two univalent reductions of the bacterial cytochrome P450 by the natural electron donor putidaredoxin, without recycling or alternative pathway reactions. Dynamic evidence shows the formation of putidaredoxincytochrome complexes prior to electron transfer. The complex formation is rate limiting in the first reduction and in our experimental conditions. The kinetics of binding between the two oxidized proteins has also been recorded in the same medium under various conditions of concentration, temperature and ionic strength. At very low ionic strength, the rate is limited by electrostatic repulsion between the two negatively charge proteins; above I = 0.03 this effect appears negligible and the affinity seems to be governed by hydrophobic interaction free energy

    Radiative diffusion in stellar atmospheres: diffusion velocities

    Get PDF
    The present paper addresses some of the problems in the buildup of element stratification in stellar magnetic atmospheres due to microscopic diffusion, in particular the redistribution of momentum among the various ionisation stages of a given element and the calculation of diffusion velocities in the presence of inclined magnetic fields. We have considerably modified and extended our CARAT code to provide radiative accelerations, not only from bound-bound but also from bound-free transitions. In addition, our code now computes ionisation and recombination rates, both radiative and collisional. These rates are used in calculating the redistribution of momentum among the various ionisation stages of the chemical elements. A careful comparison shows that the two different theoretical approaches to redistribution that are presently available lead to widely discrepant results for some chemical elements, especially in the magnetic case. In the absence of a fully satisfactory theory of redistribution, we propose to use the geometrical mean of the radiative accelerations from both methods. Diffusion velocities have been calculated for 28 chemical elements in a T_eff = 12000K, log g = 4.00 stellar magnetic atmosphere with solar abundances. Velocities and resulting element fluxes in magnetic fields are discussed; rates of abundance changes are analysed for systematic trends with field strength and field direction. Special consideration is given to the Si case and our results are confronted in detail with well-known results derived more than two decades ago.Comment: To be published in Astronomy & Astrophysics (accepted 02/03/2006

    AmFm and lithium gap stars: Stellar evolution models with mass loss

    Full text link
    A thorough study of the effects of mass loss on internal and surface abundances of A and F stars is carried out in order to constrain mass loss rates for these stars, as well as further elucidate some of the processes which compete with atomic diffusion. Self-consistent stellar evolution models of 1.3 to 2.5 M_sun stars including atomic diffusion and radiative accelerations for all species within the OPAL opacity database were computed with mass loss and compared to observations as well as previous calculations with turbulent mixing. Models with unseparated mass loss rates between 5 x 10^-14 and 10^-13 M_sun/yr reproduce observations for many cluster AmFm stars as well as Sirius A and o Leonis. These models also explain cool Fm stars, but not the Hyades lithium gap. Like turbulent mixing, these mass loss rates reduce surface abundance anomalies; however, their effects are very different with respect to internal abundances. For most of the main sequence lifetime of an A or F star, surface abundances in the presence of such mass loss depend on separation which takes place between log(Delta M/M_star)= -6 and -5. The current observational constraints do not allow us to conclude that mass loss is to be preferred over turbulent mixing (induced by rotation or otherwise) in order to explain the AmFm phenomenon. Internal concentration variations which could be detectable through asteroseismic tests should provide further information. If atomic diffusion coupled with mass loss are to explain the Hyades Li gap, the wind would need to be separated.Comment: 27 pages, 25 figures, accepted for publication in A&

    Late stages of the evolution of A-type stars on the main sequence: comparison between observed chemical abundances and diffusion models for 8 Am stars of the Praesepe cluster

    Full text link
    Aims. We aim to provide observational constraints on diffusion models that predict peculiar chemical abundances in the atmospheres of Am stars. We also intend to check if chemical peculiarities and slow rotation can be explained by the presence of a weak magnetic field. Methods. We have obtained high resolution, high signal-to-noise ratio spectra of eight previously-classified Am stars, two normal A-type stars and one Blue Straggler, considered to be members of the Praesepe cluster. For all of these stars we have determined fundamental parameters and photospheric abundances for a large number of chemical elements, with a higher precision than was ever obtained before for this cluster. For seven of these stars we also obtained spectra in circular polarization and applied the LSD technique to constrain the longitudinal magnetic field. Results. No magnetic field was detected in any of the analysed stars. HD 73666, a Blue Straggler previously considered as an Ap (Si) star, turns out to have the abundances of a normal A-type star. Am classification is not confirmed for HD 72942. For HD 73709 we have also calculated synthetic Delta-a photometry that is in good agreement with the observations. There is a generally good agreement between abundance predictions of diffusion models and values that we have obtained for the remaining Am stars. However, the observed Na and S abundances deviate from the predictions by 0.6 dex and >0.25 dex respectively. Li appears to be overabundant in three stars of our sample.Comment: Accepted for publication on A&

    Vertical abundance stratification in the blue horizontal branch star HD135485

    Get PDF
    It is commonly believed that the observed overabundances of many chemical species relative to the expected cluster metallicity in blue horizontal branch (BHB) stars appear as a result of atomic diffusion in the photosphere. The slow rotation of BHB stars (with T_eff > 11,500K), typically v sin{i} < 10 km/s, is consistent with this idea. In this work we search for observational evidence of vertical chemical stratification in the atmosphere of HD135485. If this evidence exists, it will demonstrate the importance of atomic diffusion processes in the atmospheres of BHB stars. We undertake an extensive abundance stratification analysis of the atmosphere of HD135485, based on recently acquired high resolution and S/N CFHT ESPaDOnS spectra and a McDonald-CE spectrum. Our numerical simulations show that nitrogen and sulfur reveal signatures of vertical abundance stratification in the stellar atmosphere. It appears that the abundances of these elements increase toward the upper atmosphere. This fact cannot be explained by the influence of microturbulent velocity, because oxygen, carbon, neon, argon, titanium and chromium do not show similar behavior and their abundances remain constant throughout the atmosphere. It seems that the iron abundance may increase marginally toward the lower atmosphere. This is the first demonstration of vertical abundance stratification of metals in a BHB star.Comment: 8 pages, 5 figures, accepted to A&

    Precise Modeling of the Exoplanet Host Star and CoRoT Main Target HD 52265

    Full text link
    This paper presents a detailed and precise study of the characteristics of the Exoplanet Host Star and CoRoT main target HD 52265, as derived from asteroseismic studies. The results are compared with previous estimates, with a comprehensive summary and discussion. The basic method is similar to that previously used by the Toulouse group for solar-type stars. Models are computed with various initial chemical compositions and the computed p-mode frequencies are compared with the observed ones. All models include atomic diffusion and the importance of radiative accelerations is discussed. Several tests are used, including the usual frequency combinations and the fits of the \'echelle diagrams. The possible surface effects are introduced and discussed. Automatic codes are also used to find the best model for this star (SEEK, AMP) and their results are compared with that obtained with the detailed method. We find precise results for the mass, radius and age of this star, as well as its effective temperature and luminosity. We also give an estimate of the initial helium abundance. These results are important for the characterization of the star-planet system.Comment: 9 pages, 6 figures, 7 tables, to be published in Astronomy and Astrophysic
    corecore